 |
[MIS¼¼¹Ì³ª]Àΰø½Å°æ¸Á ÄÚµå ¿¹ |
 |
°ü¸®ÀÚ |
 |
19-10-02 09:05 |
 |
979 |
## (1) nnet ¹öÀü library(nnet) m<-nnet(Species~., data=iris, size=3) predict(m, newdata=iris)
## (2) neuralnet ¹öÀü install.packages("neuralnet") # creating training data set TKS=c(20,10,30,20,80,30) CSS=c(90,20,40,50,50,80) Placed=c(1,0,0,0,1,1) ## À§ÀÇ ¼¼ º¤Å͸¦ ÇÑ ¸ÅÆ®¸¯½º·Î ÇÕÄ¡±â df=data.frame(TKS,CSS,Placed) # load library require(neuralnet) nn=neuralnet(Placed~TKS+CSS,data=df, hidden=3,act.fct = "logistic", linear.output = FALSE) plot(nn) # creating test set TKS=c(30,40,85) CSS=c(85,50,40)
test=data.frame(TKS,CSS)
# ÆÇº´Çϱâ
Predict=compute(nn,test)
Predict$net.result
## ÆÇº°À» binary·Î Çϱâ prob <- Predict$net.result pred <- ifelse(prob>0.5, 1, 0) pred
## irisµ¥ÀÌÅͼ °¡Áö°í Çѹø ´õ ¿¬½ÀÇϱâ nn=neuralnet(Species~.,data=iris, hidden=3,act.fct = "logistic", linear.output = FALSE) nn plot(nn) ## ¾Ë°í¸®ÁòÀ» ¹Ù²Ü ¼öµµ ÀÖÀ½ nn=neuralnet(Placed~TKS+CSS,data=df, hidden=3,act.fct = "logistic", linear.output = FALSE, algorithm = "backprop", learningrate=0.2)
## 'backprop' - backpropagation, ## 'rprop+' and 'rprop-' - resilient backpropagation with and without weight backtracking ## 'sag' and 'slr' - modified globally convergent algorithm (grprop).
|
|