 |
[MIS세미나]인공신경망 코드 예 |
## (1) nnet 버전 library(nnet) m<-nnet(Species~., data=iris, size=3) predict(m, newdata=iris)
## (2) neuralnet 버전 install.packages("neuralnet") # creating training data set TKS=c(20,10,30,20,80,30) CSS=c(90,20,40,50,50,80) Placed=c(1,0,0,0,1,1) ## 위의 세 벡터를 한 매트릭스로 합치기 df=data.frame(TKS,CSS,Placed) # load library require(neuralnet) nn=neuralnet(Placed~TKS+CSS,data=df, hidden=3,act.fct = "logistic", linear.output = FALSE) plot(nn) # creating test set TKS=c(30,40,85) CSS=c(85,50,40)
test=data.frame(TKS,CSS)
# 판병하기
Predict=compute(nn,test)
Predict$net.result
## 판별을 binary로 하기 prob <- Predict$net.result pred <- ifelse(prob>0.5, 1, 0) pred
## iris데이터셋 가지고 한번 더 연습하기 nn=neuralnet(Species~.,data=iris, hidden=3,act.fct = "logistic", linear.output = FALSE) nn plot(nn) ## 알고리즘을 바꿀 수도 있음 nn=neuralnet(Placed~TKS+CSS,data=df, hidden=3,act.fct = "logistic", linear.output = FALSE, algorithm = "backprop", learningrate=0.2)
## 'backprop' - backpropagation, ## 'rprop+' and 'rprop-' - resilient backpropagation with and without weight backtracking ## 'sag' and 'slr' - modified globally convergent algorithm (grprop).
|
|